A Lower Bound for the Class Number of Certain Cubic Number Fields
نویسندگان
چکیده
Let AT be a cyclic number field with generating polynomial i a— 3 ^ û + 3 x3 —Y-x1 -=~-xi and conductor m. We will derive a lower bound for the class number of these fields and list all such fields with prime conductor m = (a1 + 21)/A or m = (1 + 21b2)/A and small class number.
منابع مشابه
On the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملReflection Principles and Bounds for Class Group Torsion
We introduce a new method to bound -torsion in class groups, combining analytic ideas with reflection principles. This gives, in particular, new bounds for the 3-torsion part of class groups in quadratic, cubic and quartic number fields, as well as bounds for certain families of higher degree fields and for higher . Conditionally on GRH, we obtain a nontrivial bound for -torsion in the class gr...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملThe lower bound for the number of 1-factors in generalized Petersen graphs
In this paper, we investigate the number of 1-factors of a generalized Petersen graph $P(N,k)$ and get a lower bound for the number of 1-factors of $P(N,k)$ as $k$ is odd, which shows that the number of 1-factors of $P(N,k)$ is exponential in this case and confirms a conjecture due to Lovász and Plummer (Ann. New York Acad. Sci. 576(2006), no. 1, 389-398).
متن کاملResearch Statement and Plan
My main research interest is number theory, in particular algebraic and computational number theory. Specifically, I am interested in computational aspects of number fields and function fields, in particular field tabulation and efficient computation of invariants associated with number fields and function fields. Many problems in this area have been explored extensively in the case of number f...
متن کامل